North Penn School District
 Elementary Math Parent Letter

Grade 6

Unit 3 - Chapter 7: Algebra: Expressions

Examples for each lesson:

Lesson 7.1

Exponents

An exponent tells how many times a number is used as a factor.
The base is the number being multiplied repeatedly.
For example, in $2^{5}, 5$ is the exponent and 2 is the base.
$2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$
Write the expression 4^{5} using equal factors. Then find the value.

Step 1 Identify the base.	The base is 4.
Step 2 Identify the exponent.	The exponent is 5.
Step 3 Write the base as many times as the	$4 \times 4 \times 4 \times 4 \times 4$
exponent tells you. Place a multiplication	You should have one less multiplication symbol between the bases.
Step 4 Multiply.	
So, $4^{5}=1,024$.	$4 \times 4 \times 4 \times 4 \times 4=1,024$

More information on this strategy is available on Animated Math Model \#18.

Lesson 7.2

Evaluate Expressions Involving Exponents

A numerical expression is a mathematical phrase that includes only numbers and operation symbols.

You evaluate the expression when you perform all the computations.

To evaluate an expression, use the order of operations.

Order of Operations

1. Parentheses
2. Exponents
3. Multiply and Divide
4. Add and Subtract

Evaluate the expression $\left(10+6^{2}\right)-4 \times 10$.

Step 1 Start with the parentheses.
Use the order of operations for the computations inside the parentheses.

Step 2 Rewrite the original expression, using the value from Step 1 for the part in parentheses.

Step 3 Now that the parentheses are cleared, look for exponents.

Step 4 Multiply and divide from left to right.
Step 5 Add and subtract from left to right.
$10+6^{2}$
Find the value of the number with an exponent. Rewrite as multiplication:
$10+6^{2}=10+6 \times 6$
Multiply and divide from left to right:
$10+6 \times 6=10+36$
Add and subtract from left to right:

$$
10+36=46
$$

$\left(10+6^{2}\right)-4 \times 10=46-4 \times 10$

There are no more exponents, so go on to the next step in the order of operations.

$$
\begin{aligned}
46-4 \times 10 & =46-40 \\
46-40 & =6
\end{aligned}
$$

So, $\left(10+6^{2}\right)-4 \times 10=6$.

Lesson 7.3

Write Algebraic Expressions

Word problems use expressions that you can write with symbols. An algebraic expression has at least one variable. A variable is a letter or symbol that represents one or more numbers. Writing algebraic expressions for words helps you solve word problems.

These are a few common words that are used for operations.			
```add (+) sum increased by plus more than```	subtract (-)   difference   minus   decreased by less   less than	$\begin{aligned} & \text { multiply }(\times) \\ & \text { product } \\ & \text { times } \end{aligned}$	divide ( $\div$ )   quotient divided by
17 more than x $x+17$	"More than" means add. " 17 more than $x$ " means add 17 to $x$.		
four times the sum of 7 and $\boldsymbol{n}$	"Times" means multiply. "Sum" means add.   The words mean multiply 4 by $(7+n)$.		
$4 \times(7+n)$			
A number next to a variable always shows multiplication. For example, $5 \boldsymbol{n}$ means the same as $\mathbf{5} \times \boldsymbol{n}$.			

## Lesson 7.4

## Identify Parts of Expressions

Each part of an expression between the operation signs + or - is a term. A coefficient is a number multiplied by a variable, or letter.

Step 1 Identify the terms.	There are two terms: 6 b and 7.
Step 2 Describe the terms.	The first term shows multiplication: $6 b=6 \times b$ $6 b$ is the product of 6 (the coefficient) and $b$ (the variable).
	The second term is the number 7 .
Step 3 Identify the operation separating the terms.	Subtraction gives the difference of the two terms in the expression.
Step 4 Write a word expression.	"the difference of 6 times $b$ and 7 " or   " 7 less than the product of 6 and $b "$

Lesson 7.5

## Evaluate Algebraic Expressions and Formulas

To evaluate an algebraic expression or formula, substitute the value for the variable. Then follow the order of operations.

Evaluate $5 x+x^{3}$ for $x=3,2,1$, and 0 .

$5 x+x^{3}$ for $x=3$	$5 x+x^{3}$ for $x=2$	$5 x+x^{3}$ for $x=1$	$5 x+x^{3}$ for $x=0$
$5 \times 3+3^{3}$	$5 \times 2+2^{3}$	$5 \times 1+1^{3}$	$5 \times 0+0^{3}$
$5 \times 3+27$	$5 \times 2+8$	$5 \times 1+1$	$5 \times 0+0$
$15+27$	$10+8$	$5+1$	$0+0$
42	18	6	0

To evaluate an expression with more than one variable, substitute each variable's value. Then follow the order of operations.

Evaluate $4 c-7+2 d$ for $c=2$ and $d=5$.
$4 \times 2-7+2 \times 5$
$8-7+10$
$1+10$
11
So, $4 c-7+2 d=11$ for $c=2$ and $d=5$.

## Lesson 7.6

## Use Algebraic Expressions

You can use an algebraic expression to help solve a word problem.
Use a variable to represent the unknown number.

Ina wants to serve salad at her party. She will need one head of lettuce for every 6 guests who attend. Write an expression she could use for deciding how much lettuce she needs.

Step 1 Decide what operation the problem Each head of lettuce will serve 6 people. uses.

Divide the number of guests by 6 .

Step 2 Identify the unknown number.

Step 3 Write a word expression. Then use the word expression to write an algebraic expression.

The problem does not state how many guests will attend. Use the variable $g$ for the number of guests.
"the number of guests divided by 6 "
$g \div 6$ or $\frac{g}{6}$
Ina finds out that 18 guests will attend.
Evaluate the expression for this number of guests.
Step 1 Substitute 18 for $g . \quad \frac{18}{6} \quad$ Step 2 Divide. $\frac{18}{6}=3$
So, Ina will need 3 heads of lettuce.

## Lesson 7.7

## Problem Solving • Combine Like Terms

Use a bar model to solve the problem.
Each hour a company assembles 10 bikes. It sends 6 of those bikes to stores and keeps the rest of the bikes to sell itself. The expression $10 h-6 h$ represents the number of bikes the store keeps to sell itself for $h$ hours of work. Simplify the expression by combining like terms.


## Lesson 7.8

## Generate Equivalent Expressions

Equivalent expressions are two or more expressions that are equal for any value of the variable in the expressions. You can use the properties of operations to write equivalent expressions.

## Write an equivalent expression for $4 c+2+c$.

Step 1 Identify like terms.

Step 2 Use properties of operations to combine like terms. Commutative Property of Addition: switch 2 and $c$ Associative Property of Addition: group $4 c$ and $c$ Add $4 c$ and $c$.
$4 c$ and $c$

$$
4 c+2+c=4 c+c+2
$$

$$
=(4 c+c)+2
$$

$$
=5 c+2
$$

More information on this strategy is available on Animated Math Models \#19, 20, 21 , and 22.

## Lesson 7.9

## Identify Equivalent Expressions

```
Use properties to determine whether 5a+7(3+a) and 12a+21
are equivalent.
Step 1 Rewrite the first expression using the }5a+7(3+a)=5a+21+7 Distributive Property. Multiply 7 and 3 and multiply 7 and a.
```

Step 2 Use the Commutative Property of Addition. Switch 21 and 7a.

Step 3 Use the Associative Property of Addition to group like terms. $5 a$ and 7a are like terms.

Step 4 Combine like terms.

```
\(=5 a+7 a+21\)
\(=(5 a+7 a)+21\)
```

Compare the expressions: $12 a+21$ and $12 a+21$. They are the same.
So, the expressions $5 a+7(3+a)$ and $12 a+21$ are equivalent.

More information on this strategy is available on Animated Math Models \#19, 20, 21 , and 22.

## Vocabulary

Algebraic expression - an expression that contains at least one variable
Base - a number used as a repeated factor
Coefficient - a number that is multiplied by a variable
Equivalent expressions - expressions that are equal to each other for any values of their variables

Evaluate - to find the value of an expression
Exponent - a number that tells how many times a base is used as a factor
Like terms - terms that have the same variables with the same exponents
Numerical expression - a mathematical phrase that uses only numbers and operation signs
Order of operations - a special set of rules which gives the order in which calculations are done in an expression

Terms - the parts of an expression that are separated by an addition or subtraction sign
Variable - a letter or symbol that stands for an unknown number or numbers

